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A general solution of the Deny convolution equation restricted to a half line is
obtained using certain concepts of random walk theory. The equation in question
arises in several places in applied probability such as in queueing and storage
theories and characterization problems of probability distributions. Some of the
important applications are briefly discussed.  © 1988 Academic Press, Inc.

1. INTRODUCTION

Let S be such that it equals either R(=(— o0, o0)) or R, (=[O0, ©0)), o
be a o-finite measure on S such that ¢({0}) <1 and H: S — R, be a Borel
measurable function that is locally integrable (w.r.t. Lebesgue measure),
satisfying the integral equation

H(x)=LH(x+ y)o(dy)  foraa [L]xeSs, (L.1)
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where a.a. [L] refers to “almost all w.r.t. Lebesgue measure.” The integral
equation (1.1) when S= R or S= R, has been extensively studied by many
authors. In particular, Deny [8] has identified the general solution to the
equation when S=R and -Lau and Rao [13] when S=R_. (Indeed,
Deny [8] arrives at the solution to the equation with S'= R assuming H to
be continuous; however, as a straightforward corollary of Deny’s theorem,
the general solution when H is not necessarily continuous follows as
pointed out by Rao and Shanbhag [25].) A special case of Deny’s result
when o is a probability measure and H is bounded was established earlier
by Choquet and Deny [6], while the Lau—-Rao result subsumes various
- partial results given earlier by Marsaglia and Tubilla [17], Shanbhag [28],
Shimizu [30], Ramachandran [19], and several others.

There also exist by now a number of alternative approaches for arriving
at the solution to (1.1) either in the case of S=R or S= R, . (See, for
example, Ramachandran [20], Davies and Shanbhag [7], Ramachandran
and Prakasa Rao [21], Lau and Rao [14, 157, Rao and Shanbhag [24]
and Alzaid, Rao, and Shanbhag [3]). Both Deny’s theorem and its variant
given by Lau and Rao have applications in characterization problems of
probability distributions and branches of applied probability such as
reliability and renewal theories. For the details concerning applications,
the reader is referred to Feller [9, Vol.2, p.3517], Shimizu [30],
Shanbhag [287], Lau and Rao [13], Rao and Shanbhag [25], Rao [22],
Alzaid [1], and Rao and Shanbhag [24] and relevant references therein.

Consider now the integral equation |

| H(x)=fR H(x+ y) o(dy) foraa [L]xeR,, (1.2)

where ¢ is a o-finite measure on R such that ¢({0})<1 and H is a
nonnegative locally integrable Borel measurable function on R. (It can be
shown by choosing A and ¢ properly that the Lau—Rao [13] equation is a
special case of (1.2).) We show that H satisfying (1.2) has the represen-
tation

H(x)= j

(— o0,

H(x+ y) p(dy) + &(x) ™ | foraa. [L]xeR, (1.3)
0) ‘

for some real 5, a certain measure p concentrated on (—o0,0), and a
nonnegative periodic function ¢ having every nonzero support point of ¢ as
its period. Further the measure p arrived at in (1.3) is such that if
g((— o0, 0)) >0, then either both p and ¢ are nonarithmetic or they are
arithmetic with the same span.

In view of this result, it is shown in Corollary 1 of Section 2, that
Deny’s [8] result or its generalized versions given by Lau and Rao [15]
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and Prakasa Rao and Ramachandran [21] follow from the Lau—Rao [13]
theorem. Since the proof of (1.3) given in this paper is rather simple, the
observation just made concerning the alternative proof of Deny’s [ 8] result
- is of importance, especially in the light of the elementary proof based on
exchangeability of the Lau—Rao theorem given recently by Alzaid, Rao,
and Shanbhag [3]; the possibility of such an approach to Deny’s theorem
was pointed out by Alzaid, Rao, and Shanbhag [3]. (The reader may find
it instructive to compare the present proof based on the Lau—Rao theorem
of Deny’s theorem with the proof of the LLau—Rao theorem based on Deny’s
theorem as given by Rao and Shanbhag [24].)

2. THE MAIN THEOREM

Let us consider Eq. (1.2), and define, relative to o, the measures o,, and
0,, on R such that for every Borel set B of R and every integer n> 1,

01,(B)= a"({(x%, X )ER": 5, eR, , m=1,.,n—1,s5,€B})
and |
Go(B) =0"({(x1, «er xn)eR"v: $,€(—00,0),m=1,.,n—1, S,,éB})_
(=0"({(X1, o X,) ER": 5y > 5, m=1, ., n—1,5,€B])),

where s,,=x,+ --- +x,,, m=>1 and ¢” is the product measure []"_, o,
with ¢,= 0 in the notation of Burrill [57]. Following the analogy with con-
cepts in random walk in probability theory, we may refer to the measures p
and 7 defined below respectively as the descending ladder height measure
and the (weak) ascending ladder height measure relative to o,

o0

p()= 3 G1,((—0,0)N") (2.1)
and
()= Y oaulRy ). (22)

It is easy to check that if ¢((— oo, 0)) >0, then the closed subgroup of R
generated by supp[p] is the same as that generated by supp[o]. Also, if
a((0, c0)) >0, then the closed subgroup of R generated by supp[t] is the
same as the one generated by supp[o]. These observations in turn, imply
that if a((— o0, 0)) > 0, then either both p and ¢ are nonarithmetic or both
are arithmetic with the same span, and if ¢((0, c0)) > 0, then either both t
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and o are nonarithmetic or both are arithmetic with the same span The
main result of the paper is-the following theorem. :

THEOREM. Let the function H satisfying (1.2) not be a function that is
equal to 0 a.e. [L] on (a, o), where a=inf(supp[o]). Then p and t as
defined in (2.1) and (2.2) are Lebesgue—Stieltjes measures. (This is equivalent
to the statement that they are both Radon measures and also the statement
that they are both regular measures.) Moreover,

H(x)= H(x+ ) p(dy) + E(x) e™  foraa. [L]xeR., (2.3)
)

(—c0,0

~where ¢ is a nonnegative periodic function with £(-)=¢(-+s) for every
sesupplc], and n is a real number such that

f "1 (dx) = 1. | (2.4)

(If n satisfying (2.4) does not exist, then we take & in (2.3) to be identically
zero with n as an arbitrary real number.)

Proof. The case o((0, 00))=0 is trivial, since (1.2) implies, in view of
the assumptions, that o is a Lebesgue-Stieltjes measure in this case. We
+shall therefore assume that ¢((0, c0)) > 0. The problem remains invariant if
H and a(dy) are replaced respectively by the function H(x) e ~°*, xe R, and

o ‘5ya(dy) for any de R. In that case, there is no loss of generahty in

assuming that 0((0 00))>1 and hence in assuming that’

0<H*(x)éf H(y)dy <o forall xeR

following essentially the arguments of Alzaid et al. [3]. Since (1.2) is
satisfied-by H*, the theorem follows if we prove it by replacing H by H*,
provided in this case it is found additionally that (2.3) has &(x)exp(nx),
xe R, to be decreasing. We can then assume without loss of generality
that H itself i1s a positive decreasing continuous function. Now (1.2) gives
us inductively, on using Fubini’s theorem,

k

HG ) (X o) @)+] H+ ) o) 29)

n=1

H(x)=f

(~ oo,

k=1,2,.. xXeR,,

because jR; H(x+ y)ou(dy)=[r H(x+y) 0 .1(dy), k=1,2,..,xeR,.
This, in turn, implies that for each xe R, , the sequence of the latter
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integrals on the r.h.s. of (2.5) is a decreasing (nonnegatlve real) -sequence
and hence has a limit. Consequently, we can write

H(x)= j H(x+y)p(dy)+ H(x), xeR,, (2.6)

- 00, 0)

where

H(x)=lim | H(x+ y) o (dy); (2.7)

k—oo YR

it is obvious that the function H(x), x € R, appearing here is nonnegative
and, like H, is decreasing continuous.

Since H is assumed to be positive continuous and the integral appearing
on the r.h.s. of (2.6) has to be finite, it follows immediately that p is a
Lebesgue—Stieltjes measure. (Indeed (2.6) implies, in view of the decreasing
nature of H, that p(R) < 1.) The fact that 7 is a Lebesgue—Stieltjes measure
is obvious in the case of o((—o00,0))=0, in view of the property of H,
since

t=c  and fH(y)o(dy)<oo.

R,

Furthermore, if o((— oo, O))>0, then given any sge (— o0, 0)nsupp[o]
and ye R, , we have

() o ((323) |
<r<<—oo,y+(izl—m>)+p<<%,o>>, n=0,1,2., (28)

which implies that

((mreg)em @ (o)

Since 1((—o0,0))=0, we have then by reverse induction that
7((— o0, y)) < oo for each y. This implies that 7 is a Lebesgue—Stieltjes
measure. (For obtaining (2.8), the identity given in brackets immediately
after the definition of o,, may be used.) This establishes the first part of the

theorem.
Define now, for any Borel set A(< R), o{, to be the measure ¢,, with
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s;€ R, in its definition replaced by s, € R, n A. Clearly then for every
x€ R, and Borel set 4 the sequence SRR

{L H(x+ ) an(d;): n=1,2, }

is a decreasing sequence of nonnegative real numbers and hence has a limit.
Consequently. we have for each ce R,

H(x)= lim f H(x + y) a1%(dy)

n — 0O

+ lim j H(x+ y) ol °°)(dy) xeR,. (2.9)

n— oo

Since for every x,ce R, and n=1, 2, ...

j H(x+y) ofs=Ndy)<|  H(x+y)o(dy)

(¢, o)

it follows that the latter limit on the r.h.s. on (2.9) tends to zero as ¢ — co. -
We can therefore write

"~ H(x)= lim hmj H(x+y)of2Udy),  xeR.. (210)

¢ — 00 n— o0

If we now define ¢{ by the expression for ¢,, given under brackets
immediately after its definition with s, > s, replaced by ¢ >s, > s,, then for
eachceR, and n=1,2,.

[ HEe+ ) 0l )
Ry

-2 |

[ He+y+2) 00, uld)oidy),  xeR,, (211)
[0,c1 YR,

where o, is the probability measure concentrated on {0}, because
n ,
= U {(xX1y s X,):8,> 8, r=1,2, . ,m—1;5,=5,,r=m, .., n.

Since 7 is a Lebesgue«Stleltjes measure, t((-) & >® e(R,. ") is
increasing in ¢ with limit t as ¢ — oo, and

o<f H(x+y+7z)o(dz) <H(x), x yeR,,n=1,2, ..,
YR, . : ‘
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we get from (2.10) and (2.11), usmg the Lebesgue domlnated convergence
theorem in particular, that .

H(x)= lim H(x + ) 19(dy)

€— 0 Yf(, c]
= H(x+y)udy), xeR,. (2.12)
R, ' .

Then (2. 6) (together with the note concerning H following it) and (2. 12)
imply the second part of the theorem, in view of the Lau—Rao [13]
theorem, for which an elementary proof exists as shown by Alzald et al.

[3].

Remark 1. The above theorem remains valid with trivial changes in its
proof even when the local integrability of H on R is replaced by that on
(o, 00), where « is as defined in the statement of the theorem.

Remark 2. The proof of the above theorem simplifies considerably if
(1.2) is replaced by (1.1) with S= R. In that case, essentially by symmetry,
the fact that p is a Lebesgue-Stieltjes measure implies that 7 is a
Lebesgue-Stieltjes measure. Also, the validity of the identity in (2. 6) for all
x € R implies that

f H(x+ y) p(dy) < oo forall xeR.
(~0,0) ,

The derivation of (2. 6) from (1.2) remains valid also for H increasing
continuous provided we do not require any longer H to be decreasing.
Using this fact and appealing to the essential symmetry, we have

f H(x+ y)1(dy)< o forall xeR
Ry

In view of these observations, it follows that, in the present case, the.
theorem follows even when the portion of the proof following the obser-
vations that p is a Lebesgue—Stieltjes measure until the identity (2.10) is
deleted, provided [0, c], 6§, and ¢{% <1 in (2.11) are replaced respectively
by R, 0,,, and ¢,, and the portions not relevant are deleted.

CorOLLARY 1 (Deny [8] and Lau and Rao [15]). - If H satisfying (1.1)
with S'= R is not a function that is equal to zero a.e. [L], then it has the
representation

H(x) = &,(x) exp(n,x) + &x(x) exp(nax)  for aa. [L]xeR
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where & and &, are periodic functions with £(-)=¢,(-+5), i=1, 2, for each
point sesupplo] and n, such that AT

j exp(n,x) o(dx)=1, i=1,2
R

(For the uniqueness of the representation but for the ordering of the
terms, one may assume for example that £,=0 if #,=#,; Rao and
Shanbhag [24] have implicitly assumed this to be so in their proof of the
Lau-Rao [15] result based on Deny’s theorem.)

Proof. As in the proof of the main theorem, it is clear that there is no
loss of generality in assuming H to be continuous and decreasing. In such a
case, we get

H(x)=f o o H(x+ y) p(dy) + &(x) exp(nx) forall xeR  (2.13)

(— o0,

with & as a nonnegative continuous periodic function on R with every non-
zero point of supp[o] as its period and n as a real number. Clearly # in
(2.13) satisfies

f exp(nx) a(dx) = 1

if & # 0. Define now c* to be equal to zero if £ =0 and to be the supremum
of the set C defined as the set of all nonnegative ¢’s for which
H.(x) 2 H(x)—cé(x)exp(nx) =0 for all xe R and

CH)=|HAx 4 ) pldy) + de(x) exp(nx), xR

Y(— o0,

with d> 0. Clearly C is compact by the dominated convergence theorem
(on noting in particular that 0 <c¢, d<exp(—#nxo) H(xy)/E(xo) (< 00) when
£(xo) #0) and hence c* e C; also

ch*(x)=f(_ He(t ) pdy), xR (2.14)

In view of the Lau—Rao [13] theorem (which is now an obvious corollary
of the main theorem) and the definition of H.., the asserted representation
for H follows. :

Remark 3. Ifois any Lebesgue-Stieltjes measure on R (not necessarily
associated with an integral equation), then, using the arguments employed
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in the proof of the theorem to establish t to be a Lebesgue-Stieltjes
measure, we have that both p and 7 as defined in (2.1) and (2.2) respec-
tively are Lebesgue-Stieltjes measures when at least one of them is given to
be so. In that case it is easily seen that

p(B) if B is a Borel set = (— o0, 0)
B *p(B) = A
7(B)+7%p(B) {’L‘(B) if Bisa Borel set< R » (2152)
which implies that
c+1t*p=p+1. (2.15b)

(To see (2.15a), it is sufficient to observe that p(B) is given by the Lh.s. of
the identity for each Borel subset B of (— oo, 0); the second part of the
identity then follows essentially by symmetry.)

Equation (2.15) implies that for every relatively compact Borel subset B
or R
o(B)=p(B)+1(B)—1*p(B), : (2.16)

which may be viewed as the Wiener—Hopf factorization of ¢. In the proof
of the theorem, after observing that p and t are Lebesgue—Stieltjes
measures, one could have obviously appealed to either (2.15b) or (2.16) to
arrive at the result, given the condition

j H(x+ y)(dy)< oo forall xeR,,
.R+ '
since this yields

A(x)= H(x)— J

(— oo,

o H(x+ y) p(dy)

_ ”R H(x+ y) o(dy) — jR H(x+ y) p(dy)

Y

n

_ I:H(x+ 2] Hooty+2) @) | (@)

YR

=: H(x + y) 1(dy), XeER,.

Ry

In the case of (1.1) with S= R, we have

J H(x+ y) 1(dy) < o0, XeER
Ry
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as observed in Remark 2, and hence the present approach remains valid.
This provides us with a further proof of the result of Corollary 1.

Remark 4. In view of Remark 3, we may raise the question as to
whether there exists, under the hypothesis of the theorem, a situation in
which for some Borel B<= R, with positive Lebesgue measure

[ Hx+y) =0  forall xeB
Ry

so that the argument based on the Wiener—Hopf factorization as it stands
does not remain valid. The answer to this question is in the affirmative as is
shown in the following example.

EXAMPLE 1. Let o be the probability measure concentrated on
{—1,0,1,2,..} such that its moment generating function is given by

M(t)=1+ae (1 —e")’, t <0,
where o and B are fixed positive numbers such that 1<f<2 and
O <af < 1. (This moment generating function, but for a location change,

was considered earlier by Seneta [26] in connection with a certain problem
in branching processes.) Let H be such that

[x+1] if x=0
H(x)=
() {O otherwise,

where [x + 1] is the integer part of x + 1. Hence it follows that H satisfies
the hypothesis of the theorem and

H(x)= jR H(x+y)o(dy), xeR.,.

In this case p is the probability measure concentrated on {—1} and, in
view of the Wiener—-Hopf factorization of ¢, t is the probability measure
with the moment generating function

M*(t)=1—a(l—e")~1,  ¢<0.

The expression for M*(¢) implies that t in question has an infinite mean
and hance we have here

J "H(x+ y)t(dy)= foreach xeR,.

Ry :
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Thus we have a simple counterexample supporting the claim made. From
this example we can obviously produce examples with H satisfying an
additional condition of being positive continuous and decreasing. (It is also
worth pointing out here that this example illustrates the validity of the
statement of Feller [9, p. 380 above Theorem 2] concerning ladder height
means in a random walk that is induced by variables with zero mean; in
the present case, we have the mean of o to be zero, the mean of the
descending ladder height to be finite, and the mean of the ascending ladder
height to be infinite.)

Remark 5. In (2.3), we can choose £ to be a constant if ¢ is non-
arithmetic and as a periodic function with period A if ¢ is arithmetic with
span A.

Remark 6. For the o appearing in the theorem, the Wienér—Hopf
factorization given by (2.15) implies that for every real 6 and x, y such that
0<x<y<oo,

j exp(62) 7(dz) f exp(0z) p(dz) < f exp(67) ©(dz)
[x,»] [—x,0] [0, 1 g
yielding that
o*(0) & [ exp(62) 1(dz) < o
Ry

whenever

p*(0) & j_  exp(62) p(dz) > 1.

(This is essentially the argument used in Alzaid et al. [3] for showmg a

certain integral (& f(») dy to be finite.)

By symmetry, we have also p*(0)<oo whenever t*(0)>1. The
Wiener—Hopf factorization of ¢ also gives

a*(0) +1*(0) p*(0) = t*(0) + p*(0),  O€R, (2.17)

where
o*(0) = f exp(6x) o(dx).

Then (2.17) implies the following. If we assume - that. *(0)>1 and
p*(0)>1 (and hence that 1 <t*(0) < oo and 1 <p*(f)<o0), then we get
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that 1 —o*(0)(= (1 —7*(0))(1 — p*(0))) >0 and hence ¢*(0) < 1. However,
the definitions of p* and t* imply that p*(8) and t*(0) denote respectively
p((—0,0)) and 7(R ) corresponding to the case with e®*o(dx) in place of
o(dx). If a*(0) < 1, we have obviously the measure relative to e (dx) (ie.,
the measure for which each Borel set B receives the value |, e®a(dx)) to be
bounded by 1 and hence the ladder height measure interpretations of T and
p yields that p*(0) <1 and t*(0) < 1. Consequently it follows that for each
0 at least one of t*(f) and p*(0) should be less than or equal to 1.
(Otherwise, we arrive at a contradiction.) Now, if 0, is such that t*(6,) =1
(which implies that t*(6)>1 for each 6>60, since o({0})<1) or
p*(0y) =1 (which implies that p*(6)>1 for each 0<8,), then we can
conclude, using the monotone convergence theorem, that t*(6,)=1 and
p*(0p)<1 or p*(0y)=1 and t*(0,) <1 and hence that ¢*(8,) = 1; this, in
turn, yields that if (2.4) holds, then o*(n)=1.

Remark 7. From what is given in Remark 6, we have that the measure
o in the theorem satisfies either o((—o00,0))<1 or a(R,)< 1.

COROLLARY 2. Let H be as in the theorem and for each x € R ., let p™®
denote the p measure on R with an alteration that the s,’s involved in its
definition are replaced by s,+x. Then, for each xeR,, p* is a
Lebesgue—Stieltjes measure and, given that

Hx) and [ H(x+y) p(dy)
(— o0, 0)
~are right continuous when restricted to R, , we have for each xe R, ,

HO)= [ HOO@) e [ e (S @) @)

(_wv n=20

Jfor some nonnegative real periodic function & such that it is a constant if o is
nonarithmetic and a function with period A if o is arithmetic with span A, and
1 is as defined in the theorem. (If n satisfying (2.4) does not exist, we take
to be any arbitrary real number with & =0; also, we define, as usual p*" for
n=1 to be the n-fold convolution of p with itself and p*° to be the
probability measure that is degenerate at zero.) Moreover, if f is any Borel
measurable function on (— oo, 0) such that [ _ ., o |f(¥)] p(dy) < oo for
each xe R and &* is any Borel measurable function of the form of & defined
above with a modification that it is not necessarily nonnegative, then the
function H given by

A =] 10+ £ [

(— oo,
=f(x), xe(—,0)
satisfies (1.2) (even with “a.a. [L]” replaced by “all”.).

—x,0]

e”‘””( > p*") (dy), xeR,
n=0
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Proof. - We have that p is a Lebesgue-Stieltjes measure concentrated on
(— 00, 0). Clearly, for each xe R, and Borel set B

pO(B+x)= Y pt(— 0, —x) B), (2.19)
n=1
where p{*)=p and for each n>=2, p® is the convolution of measures
P ([—x,0)n-) and p (and hence is a well-defined Lebesgue—Stieltjes
measure concentrated on (— oo, 0)). For any bounded interval [a, 8], we
have

pO([a, 14+ x)< S p* ([ BT) < o0

n=1

and hence it follows that p**) is a Lebesgue—Stieltjes measure. Now, 1f H(x)
and [ _ . 0y H(x + y) p(dy) are right-continuous on R, then (2.3) is valid
with “a.a. [L]” replaced by “all” and ¢ as defined in (2.18). From this we
get for each positive integer k and xe R,

H(x)'=f

('-OO’ _x)

k—1 ' .
+E(x) e"<x+y>< 7 p*") (dy) (2220)
n=0 )

[_x’ 0]

me) (3 o0) @+ [ Hook ) @)

n=1

on noting that the restrictions of p*” and p*) to [ —x, 0) are identical for
each n=1. On taking, under the right continuity assumption of H(x) on

+ (or indeed just at the point 0), the limit as k — oo in (2.20), we arrive
at the identity (2.18). (Note that the assumption yields that as k — oo,
fr—x0)H(x+ y) p**(dy) - 0 for each xe R, .) It is easy to verify that H of
the corollary satisfies (1.2) (even with “a.a. [L]” replaced by “all”) on
using the observation in Remark 6 that (2.4) implies o*(y)=1 (and
p*(n)<1) and the counterpart of Feller [9, Eq. (3.7b) of Chapter XII]
relative to the random walk {—S,} in place of {S,}.

Remark 8. If H is monotonic and right-continuous or, in the case of «
finite, if the restriction of H to [, co) is locally bounded (i.e., bounded on
each bounded subset of [«, c0)) and right-continuous, then the assumption
of Corollary 2 that H(x) and | _., o) H(x+ y) p(dy) are right-continuous
when restricted to R is met.

COROLLARY 3. Let o and H be as in the theorem with o> —oo and let
p™ for each xe R, be as defined in Corollary 2. Assume that the restriction
of H to [a,00) is locally bounded and right-continuous. Define
@ ={0:0%(0)=1} with o*. as defined in Remark 6. Then O is nonempty
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(without having more than two members), and if o((— 0, 0))>0 and:0, is
the only member in @ or is the smaller of the two members in @, we have

Koy, & A xe®g(dx) <0.

[a, c0)
Moreover, in this case, we have the assertions of Corollary 2 as valid with

(i) ¢=0 if O is a singleton and pg, , <0,
(i) _f[—x,OJ e"* (e p* ) (dy) replaced by xe%* — j(—oo,O) ye®”
pNdy) if @ is a singleton and pg, ,=0, -

(i) [0y " TUEEo p*")(dy) replaced by e —[(_ g 0"
pNdy) with 0,€ O and 0, > 0, if O is a doubleton.

Proof. If o((—o0,0))>0, we have obviously in view of the fact that
o> —oo some real number 6 such that p*(6)=1 and if 6((— 00, 0)) =0, we
have clearly ¢ # 0 and, hence from the theorem, # exists such that
t*(y) =1, where p* and t* are as defined in Remark 6. From what is
mentioned in Remark 6, we have o*(0)=1 if p*(6)=1 and o*(y)=1 if
t*(n)=1. Consequently it follows that @ is nonempty. Clearly the
assumption ¢({0}) <1 implies, in view of Remark 6, that 6 <#n whenever
p*(0)=1 and t*(n)=1. From the Wiener—Hopf factorization concerning
probability measures, it is clear that for any 4, ¢*(4)=1 if and only if
either p*(1)=1 or t*(1)=1. It is therefore clear that ® can at most have
two points. (This latter fact also follows directly from properties of moment
generating functions of probability measures.) From Feller [9, Theorem 2,
p. 380 and the remark following Theorem 2, p.396], it follows that -if
p*(0y)=1, then uy ,<0. If 0, is as defined in the statement of the
corollary and o((— o0, 0))>0, then, from the fact that p*(é)=1 and
t*(n)=1 imply that 6 <#n, we have p*(0,)=1 and hence pgy ,<0. We
shall now establish assertions (i), (ii), and (iii). Clearly, assertion (1) is
obvious from Corollary 2 since the remark in Feller [9, following
Theorem 2, p. 396] implies t*(6,) < 1 if py, , <0 and, since @ = {6, }, there
is no n such that t*(#)=1. On the other hand, if we have the situation
either as in assertion (ii) or assertion (iii), we have an # such that t*(n) = 1.
In the case of py, ,=0, Feller's Theorem 2 on page 380 implies the
existence of 1 =0, and, in the case of @ containing two points, clearly we
have n=0,> 0, with 6, € ® in view of what we have observed earlier. Let £
be as in Corollary 2. We shall consider here this to be a function defined on
R. Clearly the restriction of ¢ to [a, 00) is right-continuous and locally
bounded. Define now in the case of assertion (ii)

f(x)(x—oc) e~ if xza
0 otherwise

H(x)={
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and in the case of assertion (iii)

E(x) e if xza
H(x)=
() {O otherwise.

Observe that in both/cases H satisfies (1.2) and we get

H(x)= | H(x+y) pldy) +eé(x) e, xeR,

— 00,0

for some positive constant ¢ (which need not be the same in the two cases).
In both cases, we have H satisfying the conditions required to arrive at
(2.18) of Corollary 2 and hence the equation in question is valid ‘with c¢
replacing &. Since ¢~ '¢ is of the form of &, the assertions (11) and (iii) easily
follow.

COROLLARY 4. Let {(v,,w,):n=0,1,2,..} be a sequence of vectors of
nonnegatzve real components such that at least one v, #0 and wo >0 and
4> 0. Further, let k and y be positive integers such that the largest common
divisor of k and those n for which w,> 0 be y. Then the sequence [(v ‘,,)}
as defzned satisfies the recurrence equations : '

vwik= S Wobpen  n=0,1,. (2.21)

m=0

and for some integer k, that is an integer multiple of y such that k, >k,
Ay =Vnir, n=0,1,. k+y—1 (2.22)

only if

v, =q,A"*1—R), n%O 1 ...

for some nonnegatzve perzodzc sequence {q,} with period y.

Proof. Tt is sufficient if the result is established for y—l Deﬁmng H
and o such that

V] +k» x= —k
0, otherwise,

H(x)y={
and - - e v
o({n)) =W = —k o({—k, —k+1,..}9) =0,

where [x] denotes the integer part of x, we see that the conditions for the
validity of (2.3) with “a.a. [L]” replaced by “all” are met. The equation in
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this case implies, in view of (2.22) and the fact that o({—k})>0, that
H(x+k,—k)=AH(x) for all x> —k. Since we can find an integer r such
that r(k, — k) =k, we have subsequently

H(x)=f H(x+r(k,—k)+y) A 7o(dy),  xeR, (223)

[—Fk, o0)

with r(k, —k)—k=0. There is no loss of generality in assuming that
o({0})> 0 and hence that the measure o* defined such that

oc*(B)=A""0(B—r(k,—k)) for every Borel set B

is arithmetic with unit span. Consequently, the Lau-Rao theorem (which is
now a corollary of our theorem) implies, in view of (2.23) and the
periodicity of H(x) A~*%*1=% x> —k, the required result.

Remark 9. 1t i1s also possible to prove the result of the corollary by
using the Perron—Frobenius theorem given in Seneta [27, pp. 1-2]. For the
details, the reader is referred to Alzaid [1].

Remark 10. If H i1s as in the theorem and additionally it is locally
bounded and right-continuous and « defined in the theorem is finite and
o({a})>0, then, for some B, B* > |a| with these as integer multlples of the
span of ¢ in case o is arithmetic, and A >0,

AH(x + |a]) = H(x + ) forall xe[O0, B*)

if and only if H(x) = &(x) exp(nx), xe [, c0) with £ as a periodic function
with every nonzero support point of ¢ to be its period and # such that
[ e w0) €XP(nx) 0(dx) =1 and n=(f — |a|) ' log A. This result is a version
of the above Corollary 4 in the case of arithmetic o, and it follows via a
modified version of the proof of the corollary on using the result of
Corollary 2 when H(-) is replaced by H(x,+ -) with xo,€ R in the case of
nonarithmetic o. Whether or not the result of the present remark is valid
without the condition o({{a})>0 is an interesting question to which we
have not found any answer as yet.

Remark 11. Now, if we have k to be a positive integer and {(v,, w,):
n=0,1,2,..} to be a sequence of vectors with nonnegative real com-
ponents such that w,>0, v,#0 for some n, and the largest common
divisor of k and those n for which w, > 0 equals 1, then it follows that the
result of Corollary 3 identifies the solution to the system of equations

Dpor= Y Wolmin,  7=012 .. (2.24)

m=20
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given the sequence {w,:n=0,1,2,..} and the values of vy, vy, .., v,_;.
Indeed, if we define D= {b:b>0,b" =3 (b"w,} and {f,,:i=k,
r=0,1, .. k—1} to be the sequence of absorption measures corresponding
to the nonnegative matrix 7" (in the sense of Seneta [277]) with state space
{0, 1,2, ...} and the (i, j)th element as

3, if 4,j=0,1,.,k—1
Ti= {(W,_;iix if i=kk+1,..andj=zi—k

17 J
0 otherwise,

where 6 is the Kronecker delta, then Corollary 3 yields that the system of
equations is satisfied if and only if D is nonempty, f,, ¢, ..., f, «_ 1 are finite
for each n >k, and any one of the following conditions holds:

(1) D has only one point, >*_,(n—k) b"w, <0 for be D, and

Un=fn,OUO+"'+fn,k~1vk—1a‘ n=k k+1,...

(i) D has only one point, 2w o(n—k)b"w,=0 for beD andt for
some ¢ =0,
v, z.fn, O(UO - C'O'b'o) + -+ n, k— l(vk~— 1 C(k - 1) bk— 1) + Cnbn':’ -.
n=k k-+1,..,

with be D.
(iii) D contains two points and for some ¢ >0

V=S o(Vo—CBO) 4 <+ + fo (i1 —cb* V)b,  n=kk+1,..,

with b as the larger of the two members of D.

A direct and substantially simpler proof of this last résultv without
involving the Wiener—Hopf factorization can obviously be given (see, for
example, Alzaid [1]). o

3. SoME COMMENTS ON PREVIOUS RESULTS

We shall now discuss in the light of our findings some existing results
and suggest possible extensions. - '

3.1. Arnold [4]

Let Y, ,<---<Y, , denote the n ordered observations in a random
sample of size n from a nondegenerate distribution F concentrated on the
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set of nonnegative integers. Arnold [4] raised the question as to whether
the independence of the. random variable Y, ,—Y;, and the event
{Y, ,=m} for a fixed mi > 1 implies the distribution F to be geometric (or
shifted geometric). In this case, the property is equivalent to a recurrence
relation of the type (2.24) subject to a modification that w,’s are given to
be certain functions of v,’s. In view of the modification involved, we cannot
obviously apply our result in Remark 11 directly to identify the solution
{v,} to the system of equations in the present case. However, the result of
Corollary 4 shows that, under muld conditions assuring certain points to
be atoms of F, the independence of Y, ,— Y, , and {Y, ,=m} together
with the condition

P{YZ,n_Yl,n>jIY1,n=m} C P{Yz,,,—Yl,,,>j|Yl,n——fm—i—m'},
' j=0,1, .., m,

for some fixed integer m’ > 0 characterizes F to be a geometric distribution.
This extends a result of Sreehari [31] showing that the independence of
Y, ,—Y,, and {Y, ,=m} and the independence of Y, ,—Y,, and
{Y, ,=m+m’} for some fixed integer m’ >0 characterizes, under some
mild conditions, F to be a geometric distribution.

3.2. Krishnaji [12]

In view of the result in Remark 11, it is seen that Theorem 4 of
Krishnaji [12] is not correct. This also follows from the counterexample
given by Patil and Taillie [18]. The error in Krishnaji’s argument appears
in the last sentence of the proof in which it is claimed that since
X=Aexp{A(0—1)} is degenerate, 4 has to be degenerate. We may,
however, point out here that Krishnaji’s theorem with the portion “G(t) is
non-negative for all real £ in it replaced by “G(¢) is infinitely divisible” is
valid.

3.3. Shanbhag and Taillie [24]

The following result is an extended version of the Shanbhag-Taillie [29]
result and it is a trivial corollary of our result of Corollary 4. (For a proof,
based on the Perron-Frobenius theorem, of the Shanbhag-Taillie result,
see Alzaid et al. [2].)

Let ((a,, b,):x=0,1,..} be a sequence vectovrsb with non-negative real com-
ponents such that g, >0 for all x and b,>0. Let (X, Y) be a random vector with
non-negative integer-valued components such that for each x with P{X=x} >0,
we have ’

. b,
,P{Y=y|X=x}=gi—C—x———"—, y=0,1, .., x,

X
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where {c, } is the convolution of {a,} and {b,}. Assume that P{X — Y =ky} >0
and P{X—Y=k,+k,;}>0 and denote by y the largest common d1v1sor of x for
- which b, > 0. Then the following conditions are equivalent.

" (i) Y and X—Y are independent.
(i) P{Y=y}=P{Y=yp|X—Y=ky}, y=0,1,..;

P{Y=y|X—Y=k,} < P{Y=yp|X—Y=ko+k},
y=0,1,.,ko+7y—1.

(iii) For some 6 >0 and some penodlc sequence {q,:x=0, 1, ..} with y as one
of its periods

P{X=x}=q,c.0% x=0,1,2, ...

The Shanbhag-Taillie [29] result may be considered to be a variant of
Shanbhag’s [28] extension of the Rao—Rubin [23] theorem on damage
models and is itself an extension of Patil-Taillie [18] result. Patil and
Taillie [18] have considered a specialized version of the Shanbhag—Taillie
model with a, =n*/x!, x=0,1,.., and b,=(1—-n)*/x!, x=0, 1, .., when
ne (0, 1) and fixed, and hence with ‘

P{Y:yIX: x} = (X) ny(l _n)x-y’ y=0, 1, ..., x; .XZ\O, : (31)
y o

These latter authors have""also‘_§ﬁ'bwn that if (3.1) is valid together with
P{Y=y}=P{Y=p|X— Y=k}, y=0,1,.; P(X— Y=k} >0 (3.2)

for some fixed k>0, then it is not necessary that X be Poisson thus
disproving a conjecture of Srivastava and Singh [32]. Our result of the last
remark not only shows that the Srivastava—Singh conjecture is false but
also identifies under the Shanbhag-Taillie model the class of distributions
relative to which the condition (3.2) is valid. In particular, it follows from
our result that under the model in question (3.2) is valid with k = 1, if and
only if either g, /c, oc 041~ '+ (1—0) A3~ for some # <1 and 0< A, <4, -
satisfying 3.2 o b, 47" '=3>F b, A3 or g./c, oc {6+ (1—0)x} A* for
some 0e[0,1) and 1>0 satlsfymg 22 o (x—=1)b,A"=0, where
=P{X=x}.

3.4. Kendall [10, 117, Lindley [167], and Others

The restricted Deny equation (1.2) appears in several places in queueing
and storage theories (see, for example, Kendall [10, 11], Lindley [16], and
Wishart [33]). In particular, Lindley [16] has shown that the stationary
waiting time distribution function corresponding to a GI/G/1 queueing
system satisfies (1.2) with H(x)=0 for x <0. Indeed our Corollary 2 gives
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the expression for H in this case and shows that the distribution in
question exists if and only if the relative traffic intensity of the system is less
than 1 and that when it exists the distribution is compound geometric; it
may, however, be noted here that the results cited are not new and these
have appeared in Lindley [16], Feller [9], and elsewhere. The results of
our last remark could be applied to obtain certain conclusions of
Kendall [117] and Wishart [33] concerning GI/M/s and GI/E, /1 systems,
respectively. The result implies that, in either of the two cases, the
stationary queue length distribution exists if and only if the corresponding
relative traffic intensity is less than 1. Also it yields the known results that
. in a GI/M/1 queueing system the stationary queue length distribution is
geometric and in a GI/M/s system the stationary waiting time distribution
is exponential but for a discontinuity at zero. :
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